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Organizations increasingly use artificial intelligence (AI) to solve previously unexplored
problems. While routine tasks can be automated, the intricate nature of exploratory
tasks, such as solving new problems, demands a hybrid approach that integrates human
intelligencewithAI.We argue that the outcomes of this human–AI collaboration are con-
tingent on the processes employed to combine human intelligence and AI. Our model
unpacks three hybrid problem-solving processes and their outcomes: Compared to
human problem-solving, autonomous search generates more distant solutions, sequen-
tial search enables more local solutions, and interactive search promotes more recombi-
native ones. Collectively, these hybrid problem-solving processes broaden the range of
organizational search outcomes. We enrich the behavioral theory of the firm with a
technology-conscious perspective of organizational problem-solving that complements
its traditional human-centric perspective. Additionally, we contribute to the literature
on AI in management by extending its scope from using predictive AI for routine tasks
to generativeAI applications formore exploratory tasks.

All life is problem solving.

—Karl Popper, Philosopher of Science

We are now solving problems with machine learning
and artificial intelligence that were in the realm of sci-
ence fiction for the last several decades.

—Jeff Bezos, Chairman of Amazon

Simon et al. (1987: 11) described the tasks of man-
agers, scientists, and engineers in organizations as
“largely [the] work of making decisions and solving
problems.” Following in their footsteps, behavioral
theory scholars developed models of decision-
making and problem-solving in organizations that
“took account of the nature of the human agents who
constituted them” (Puranam, Stieglitz, Osman, &
Pillutla, 2015: 337). These models describe how

humans’ cognitive limitations, and the incomplete
information they process, bias organizational deci-
sions (Gavetti, Greve, Levinthal, & Ocasio, 2012;
March & Simon, 1958) and constrain organizational
search for problem solutions (Cyert & March, 1963;
Posen, Keil, Kim, &Meissner, 2018).

Organizations’ increasing use of artificial intelli-
gence (AI) challenges these human-centric assump-
tions. AI enables artificial agents to perform cognitive
functions, such as decision-making and problem-
solving, previously only associated with humans
(Krakowski, Luger, & Raisch, 2023). Research onAI in
management has suggested that these artificial agents
do not have humans’ cognitive limitations (Murray,
Rhymer, & Sirmon, 2021), and that their predictions
are often superior to those of humans (Agrawal,
Gans, & Goldfarb, 2018: 110). Consequently, scholars
have explored how, and under which conditions, AI
prediction reduces biases in recurrent decisions
(Shrestha, Ben-Menahem, & Von Krogh, 2019), such
as having to select between candidates for positions
(Newman, Fast, & Harmon, 2020), deals for venture
capital investments (Blohm,Antretter, Sir�en, Grichnik,
& Wincent, 2020), or customer offerings for sales calls
(Bader & Kaiser, 2019).

While such routine decision-making focuses on
previously explored situations with known proce-
dures and solution alternatives, problem-solving
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occurs in situations where the problem is new and
the solutions are unknown (March & Simon, 1958:
160; Winter, 2003). The principal challenge, there-
fore, lies not in predicting and selecting the best
alternative, but in understanding a previously unex-
plored problem and embarking on a search for new
solutions (Posen, Keil, Kim, & Meissner, 2018). Con-
sequently, problem-solving is not limited to the use
of predictive AI, which learns patterns from existing
data to anticipate future outcomes, but could also
benefit from generative AI, which creates new data
based on learned patterns (Savage, 2023).

Furthermore, while routine tasks can be automated,
the intricate nature of more exploratory tasks, such as
problem-solving, demands a hybrid approach that
integrates human intelligence with AI (Von Krogh,
2018). Some scholars have suggested that using AI
for problem-solving might aid humans by enabling
more distant organizational searches (Amabile, 2020;
Raisch & Krakowski, 2021). However, others have
cautioned that AI could interfere with human
behavior by, for example, imposing formal rational-
ity (Lindebaum, Vesa, & den Hond, 2020), thereby
exacerbating organizations’ learning myopia
(Balasubramanian, Ye, & Xu, 2022). It is therefore
unclear how AI technology’s promise to enable more
distant searches translates into actual search pro-
cesses and outcomes in organizational contextswhere
humans andAI agents jointly solve problems.

We address this lacuna by investigating the pro-
cesses and outcomes associated with combining
human intelligence and AI in organizational
problem-solving. Our hybrid problem-solvingmodel
conceptualizes three processes: Autonomous search
combines predictive and generative AI to create
solutions independently, while humans select from
the solutions. For example, GM used AI to design
ultra-light car parts that helped the company meet
new carbon emission standards (Krok, 2018). An
AI agent generated thousands of new designs and
improved them through machine learning. GM’s
engineers selected a new AI-generated design that is
40% lighter and 20% stronger than the original ver-
sion. Sequential search starts with predictive AI
exploring a problem, but thereafter humans search
for solutions. For example, scientists used an AI
agent to identify the biological pathways that a
Covid-19 treatment could target (Kuchler, 2022).
These insights then allowed the scientists to repur-
pose an existing drug, which is nowwidely used as a
Covid-19 treatment. Interactive search uses predic-
tive and generative AI, but allows humans to search
jointly with AI. For example, an ailing U.K. retailer’s

creative team worked with AI to learn which adver-
tising contents trigger campaign sales (Dempsey,
2021). These insights led to jointly developed new
advertising contents that not only differed markedly
from the company’s traditional contents but also
turned its sales around.

Drawing on these hybrid problem-solving types,
we build theory on how each type involving a human
and an AI agent changes the problem-solving process
and outcome compared to an equivalent collective
search with two humans. Our theory suggests that
autonomous search is associated with more distant
outcomes, because an AI agent searches more widely
for solutions than a human can, and the human tends
to follow AI’s quantitative ranking of its solutions.
Conversely, we propose that sequential search leads
to more local outcomes, because an AI agent’s analy-
sis of a problem provides better search directions,
which, in turn, increase the chances of a human’s
local solution search being successful. Finally, we
surmise that interactive search leads tomore recombi-
native outcomes, since a human and an AI agent’s
mutual learning promotes the integration of new and
existing knowledge. We conclude by identifying time
and expertise as moderators of the hybrid problem-
solving processes’ effects on outcomes.

We enrich the behavioral theory of the firm
(Gavetti et al., 2012; March & Simon, 1958) with a
technology-conscious perspective of organizational
problem-solving that complements its traditional
human-centric perspective. Our work conceptua-
lizes several new search mechanisms that emerge
from AI or human–AI interaction. It also reveals that
hybrid problem-solving widens the range of organi-
zational search outcomes compared to those that
current behavioral search models predict (Cyert &
March, 1963; Katila & Ahuja, 2002). In addition, our
perspective explains these outcomes as being the
result of the complementarities between human and
AI agents’ asymmetric capabilities in the problem-
solving process, rather than by linking agents’ capa-
bilities directly to the search outcomes (Puranam
et al., 2015; Simon, 1957). Finally, we contribute to
the literature on AI in management (Murray et al.,
2021; Raisch & Krakowski, 2021) by extending its
scope from using predictive AI for routine tasks
to generative AI applications for more exploratory
tasks, such as search and problem-solving.

ORGANIZATIONAL SEARCH THEORY

There is a long research tradition of exploring how
organizations solve problems by drawing on the
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behavioral theory of the firm (Katila & Ahuja, 2002;
March & Simon, 1958). An organization’s recogni-
tion of a problem leads to a search process that
ceases once a satisfactory solution is found (Cyert &
March, 1963). This search process is central to a
broad variety of organizational behaviors, including
the creation of novel strategies, the pursuit of entre-
preneurial activities, and the development of new
products (Greve, 2003). Owing to incomplete infor-
mation, organizations must search for solutions,
although their human agents’ cognitive limitations
constrain this search to a small set of alternatives
(Simon, 1957). These agents pursue local search “in
the neighborhood of the current alternative,” mean-
ing that a “new solution will be found ‘near’ an
old one” (Cyert & March, 1963: 170). Only when a
local search fails to find a solution does the organiza-
tion gradually move toward a more distant search
(Gavetti et al., 2012).

A key downside of local search is that it is less
likely to generate the variability required to solve
novel problems (Fleming & Sorenson, 2004). More-
over, local search may not lead to the best solutions
in complex environments, which could see organi-
zations stalling due to their inferior solutions
(Levinthal, 1997). Local search’s limitations have
spawned a rich body of literature on themechanisms
that organizations use to promote more distant
search (e.g., Gavetti & Levinthal, 2000; Knudsen &
Levinthal, 2007), which include technological tools,
such as knowledge repositories (Furlan, Galeazzo, &
Paggiaro, 2019), crowdsourcing platforms (Afuah &
Tucci, 2012), and online communities (Jeppesen &
Lakhani, 2010). However, these studies have also
shown that the use of technology-as-a-tool requires
substantial cognitive capacity, which frequently
overwhelms boundedly rational humans using such
tools, and who therefore continue constraining their
search to a limited set of alternatives (Afuah & Tucci,
2012; Piezunka & Dahlander, 2015).

Contrary to prior technologies, AI agents can
search independently of humans (Amabile, 2020;
Von Krogh, 2018). Further, unlike humans, they can
process a quasi-unlimited set of alternatives (Raisch
& Krakowski, 2021), and often produce better predic-
tions of their performance (Agrawal et al., 2018: 110).
Considering these technological changes, we develop
a conceptual framework specifying an AI-based
search’s key applications to organizational problem-
solving processes. We start by clarifying our theory’s
boundaries as a set of baseline assumptions (Dubin,
1978) referring to the characteristics of an organiza-
tional search embedded in our theorizing, as well as

to the delineation of the contexts to which our theory
applies.

Assumptions about Organizational Search

Context. We reaffirm that organizational search
occurs under conditions of uncertainty—meaning
that when organizational agents attempt to solve
new problems, their knowledge about the problem
(March & Simon, 1958: 161), the range of possible
solutions (Kaplan, 2011), and their outcomes (Posen
et al., 2018) is incomplete. This assumption corre-
sponds to prior studies conceptualizing uncertainty
as the informational context within which organiza-
tions search (e.g., Fleming, 2001; Nelson & Winter,
1982; Simon, 1957).

Agency. Conditions of uncertainty imply that
human agents influence the search by using their
cognitive capabilities. For example, humans learn
from observation (i.e., vicarious learning) and experi-
mentation (i.e., experiential learning), which enables
them to apply their expertise and creativity to new
problems (Gavetti & Levinthal, 2000). However,
like prior research (e.g., Csaszar & Levinthal, 2016;
Fleming, 2001; March & Simon, 1958), we recognize
that because humans lack complete information,
and have limited cognitive capacity to process this
information, their search could also be constrained.
Specifically, prior research has suggested that humans
formmental representations that only consider certain
problem dimensions, which makes their understand-
ing of a problem partial, constrains the set of possible
solutions they consider, and biases their evaluation of
these options (Gavetti & Levinthal, 2000; Knudsen &
Levinthal, 2007).

Process. We follow prior work describing the
search process as comprising two stages (e.g., Csaszar
& Levinthal, 2016; March & Simon, 1958: 161; Posen
et al., 2018): problem definition and solution search.
During problemdefinition, organizational agents iden-
tify the elements that constitute the problem and clar-
ify the relationships between these elements. By doing
so, the agents form a mental representation of the
space in which solution search could be undertaken.
During a solution search, humans explore this space
to generate solutions. These activities could be con-
nected through feedback loops, and organizations
could cycle back and forth between the stages.

Outcomes. Finally, we assume that humans’ cog-
nitive limitations contribute to organizations’ ten-
dency to generate local search outcomes rather than
more distant ones. This assumption recognizes
that local search requires fewer cognitive resources,
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leverages current expertise, and often leads to supe-
rior short-term performance (Knudsen & Levinthal,
2007; Laursen, 2012). Although this assumption
does not always apply (Billinger, Stieglitz, &
Schumacher, 2014), humans’ search processes are
ceteris paribus more likely to result in local search
outcomes (e.g., Greve, 2003; Katila & Ahuja, 2002;
Stuart & Podolny, 1996).

We next integrate insight from the literature on AI
in management to expand our assumptions from
human to artificial agents.

AI IN MANAGEMENT

Foundational AI research has addressed manage-
rial applications such as decision-making (Newell,
Shaw, & Simon, 1959). Simon (1965: 47) predicted
that “we will soon have the technological means
(… ) to automate all managerial decisions.” While
expectations were high, subsequent technological
progress was slow, which led to an “AI winter”
(Csaszar & Steinberger, 2021: 23). In recent years,
advances in computational power, the exponential
increase in data, and new machine-learning models
have enabled managerial practice to adopt AI
(Raisch & Krakowski, 2021). Current applications
mostly use deep learning with artificial neural net-
works (LeCun, Bengio, & Hinton, 2015), a specific
type of AI that differs from prior technologies in
its unique ability to learn and act autonomously.
Artificial neural networks are computing systems
comprising neurons and layers that simulate the
human brain structure. Deep learning is a class of
machine-learning algorithms that uses artificial neu-
ral networks’multiple layers to progressively extract
higher-level features from the input data (Shrestha,
Krishna, & Von Krogh, 2021).

These AI technologies are now used for problem-
solving in various application domains, such as drug
discovery,1 industrial design, and content creation.

Pharmaceutical companies including Pfizer, Roche,
and Sanofi use them to discover drugs when there
are either no drugs for a disease or the existing drugs
have limited efficacy (Deng, Yang, Ojima, Samaras,
& Wang, 2022; Fleming, 2018). Manufacturing com-
panies, such as Airbus, GM, and Volkswagen, use
AI-based search to design industrial products or
components in situations with complex design pro-
blems for which there are either no solutions or
those that do exist are insufficient (Oh, Jung,
Kim, Lee, & Kang, 2019; Vinoski, 2019). Consumer
product companies, such as L’Or�eal, Sephora, and
Unilever, use AI-based search to create audio, text,
and visual content for advertising, marketing, and
social media if there is either no appropriate content
or the current content fails to attract sufficient
consumer interest (Anantrasirichai & Bull, 2021;
Simone, 2021).

While management scholars have taken note of
such AI applications to solve problems (Amabile,
2020; Von Krogh, 2018), they have not explored
them further. Instead, recent research on AI in man-
agement has focused on routine decision-making
(e.g., Balasubramanian et al., 2022; Shrestha et al.,
2019). This work provides general insight into AI
applications in management, which we integrate
to expand our baseline assumptions from human
agents to artificial ones.

Assumptions About AI Agents

Context. Building on prior research, we assume
that humans must remain involved when organiza-
tions use AI to solve new problems under uncer-
tainty (Von Krogh, 2018).2 When new problems are
addressed, humans need to set objectives and pro-
vide input data to allow AI agents to operate (Raisch
& Krakowski, 2021). Furthermore, solving problems
under uncertainty is computationally difficult; con-
sequently, instead of optimizing these problems, AI
agents just approximate them; that is, the solutions
they generatemight be close enough to be practically
useful, but they nevertheless always relax certain
real-life constraints (Fortnow, 2013). Consequently,
humans need to use their intuition and judgment to

1 DeepMind’s AlphaFold (Jumper et al., 2021) provides
an impressive example of AI-based problem-solving in
drug discovery. AlphaFold solved the “protein folding
problem,”which had been a grand challenge in biology for
half a century. The AI-based platform predicts the biologi-
cal functionality that proteins unfold when entering organ-
isms such as the human body. Before AlphaFold, centuries
of experiments and laboratory studies had led to predic-
tions of roughly 180,000 proteins. DeepMind delivered
predictions of 100 million more proteins; that is, nearly
every protein whose genetic sequence is known to science.
Since DeepMind open-sourced AlphaFold in 2021,
research institutions have started leveraging this AI-based

platform to discover drugs and design de novo protein can-
didates with applications in biotechnology,medicine, agri-
culture, food science, and bioengineering (Toews, 2021).

2 This first assumption holds if there is no artificial gen-
eral intelligence. Computer scientists agree widely that
there will be no artificial general intelligence in the fore-
seeable future (Walsh, 2017).
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reconcile AI agents’ output with reality when select-
ing solutions (Brynjolfsson &McAfee, 2014: 92).

Agency. We further assume that AI agents’ greater
information-processing capacity allows them to
explore a search space more widely than humans
can (Amabile, 2020; Raisch & Krakowski, 2021).
However, AI agents only do so when they have
access to extensive data with many prior solution
examples to define and explore the search space.
While the digital age’s increasing data generation
has extended AI’s range of application domains
greatly (Von Krogh, 2018), insufficient data avail-
ability could still lead to suboptimal system perfor-
mance or prevent the use of AI entirely (Choudhury,
Starr, & Agarwal, 2020). Contrary to humans, who
can use their intuition and creativity, AI cannot
search outside the space emerging from the data.

Process. Consistent with prior research, our
model covers autonomous (Balasubramanian et al.,
2022), sequential (Lebovitz, Lifshitz-Assaf, & Levina,
2022), and interactive (Metcalf, Askay, & Rosenberg,
2019) processes of AI use in organizations (Shrestha
et al., 2019). This variation is due to AI agents’ supe-
riority in certain dimensions, such as being able to
process data more comprehensively (Murray et al.,
2021). Nevertheless, humans outperform in other
dimensions, such as being able to use their exper-
tise to generate creativity (Brynjolfsson & McAfee,
2014: 202).

Outcomes. Finally, research has suggested that out-
comes vary, depending on how human and AI capa-
bilities are used in managerial processes (Murray
et al., 2021; Raisch & Krakowski, 2021). When
humans are involved in these processes, the out-
comes are the direct result not of AI’s capabilities
but of the ways in which human and AI capabilities
are used. Accordingly, we focus our theory not on
AI’s technological abilities but on its actual use in
organizations.3

While prior research on AI in management
informs our study, we next move from baseline
assumptions to building a specific theory of AI use
for problem-solving in organizations.

HYBRID PROBLEM-SOLVING

Hybrid problem-solving is a search process that
organizations use to solve problems by combining

human and artificial intelligence. We first discuss
this hybrid problem-solving process in general and
then distinguish between three types of hybrid
problem-solving (see Figure 1).

The Hybrid Problem-Solving Process

Pre-search stage. Humans initially engage in set-
ting objectives, or specifying an AI analysis’s target
function (Russell & Norvig, 2020), usually with
multiple requirements. For example, a new drug
should demonstrate not only high therapeutic effi-
cacy against the target disease but also, for example,
high selectivity (to minimize side effects) and low
toxicity. Since it is generally impossible to define a
full spectrum of target function requirements, AI
analysis tends to relax some of the real-life con-
straints (Fortnow, 2013).

Humans are also responsible for providing input
data, usually by combining multiple open or proprie-
tary data sources. In drug discovery, for example,
pharmaceutical companies use public chemical com-
pound libraries with descriptions of 100,000s of
molecules, as well as natural language processing-
generated databases of scientific publications on the
target disease, drugs, and patents (Deng et al., 2022).
Input data are critical for AI agents’ performance. If
data samples do not reflect the underlying distribu-
tion, the search results might be biased (Choudhury
et al., 2020). While sufficiently objective or unbiased
data are likely to be available in the application
domains we discuss in this paper, this is unlikely to
be universally true.

Search stage. There are two AI applications that
organizations could use to search: predictive AI and
generative AI.4 In the problem definition, predictive
AI learns a previously unexplored problem’s repre-
sentation directly from the input data. For example,
AI predicts the molecular features, or the combina-
tions of such features, associated with high therapeu-
tic efficacy against the target disease, high selectivity,
and low toxicity. Deep learning forms representations
at multiple levels of abstraction (Bengio, 2012) by
moving gradually from identifying individual fea-
tures associated with a single objective (feature learn-
ing) to representing multiple interrelated features

3 Consistent with prior research’s interest in AI’s use
rather than its development, we further assume that AI
technology is available at the start of the problem-solving
process.

4 Some scholars have distinguished between discrimi-
native and generative AI models (e.g., Jebara, 2004; Ng &
Jordan, 2001). While discriminative models are also pre-
dictive models, the former are limited to classifying data
into predefined categories while the latter also include
regressions or the prediction of continuous values.
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associated with all the target objectives (representa-
tion learning) (LeCun et al., 2015). The resulting
representation serves to predict the search space con-
taining all possible solutions exhibiting the target fea-
tures, called the latent space (Fernandes, Correia, &
Machado, 2019).

In solution search, generative AI searches for new
solutions exhibiting the target features in the latent
space (Goodfellow et al., 2014). For example, AI dis-
covers molecules, or combinations of molecules, with

high therapeutic efficacy against the target disease,
high selectivity, and low toxicity. The latent space to
be explored can be huge. For example, the chemical
space for drug discovery contains 1060 theoretically
possible molecules, most of which have never been
explored (Deng et al., 2022). By sampling from the
latent space, generative AI creates new synthetic data
and solutions beyond the input data (Tanaka&Aranha,
2019). Novelty can arise from the use of previously
unexploredmolecules or newmolecule combinations.

FIGURE 1
Hybrid Problem-Solving

Autonomous search
AI agent defines the problem and searches for solutions autonomously (integrated);

human selects post-search from the AI agent’s solutions (hierarchical)

Sequential search
AI agent defines the problem and human searches for solutions (sequential);

human learns from the AI agent’s problem definition at hand over (temporary)

Interactive search
Human and AI agent define the problem and search for solutions

jointly (parallel); mutual learning between these agents (continuous)

Setting
objectives

Problem
definition

Solution
search Outcome

Searchb

AI with or without humans
(dependent on type)

Providing
input data

Post-search
Always by
humans 

S
el

ec
ti

on

Pre-searcha

Always by
humans

Hybrid Problem-Solving
A search process that organizations use to solve problems by

combining human and artificial intelligence

TYPES

PROCESS

a Held constant in ourmodel.
b The two search stagesmay be recursive.
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While the problem definition precedes the solu-
tion search, humans (Posen et al., 2018) and AI
agents (Goodfellow, Bengio, & Courville, 2016: 301)
usually iterate between these stages.5

Post-search stage. After the search has been com-
pleted, humans are responsible for the final solution’s
selection. They use their contextual understanding to
assess solutions and select from these. This selection
could therefore be subject to human biases. Research
has shown that humans prefer more proximate solu-
tions (Greve, 2003; Knudsen & Levinthal, 2007) and
have difficulties with assessing solutions accurately
across objectives (Ethiraj & Levinthal, 2009). Predic-
tive AI suffers less from these limitations and could
therefore inform humans’ selection by providing
a quantitative assessment of AI-generated solutions
across objectives (LeCun et al., 2015).

Outcome. Finally, we follow Katila and Ahuja
(2002) when assessing local versus distant search
across two dimensions: the search depth, which
measures the extent to which existing solution
knowledge is reused (i.e., knowledge available at the
start of the problem-solving process), and the search
scope, which indicates the extent to which new
knowledge is used (i.e., knowledge generated during
the problem-solving process). The reason for this
distinction is that the search depth and scope are
contradictory, but also mutually enabling, dimen-
sions: Existing knowledge is not only required
to absorb and integrate new knowledge (Zahra &
George, 2002) but also enables recombinations that
are a major source of novelty (Fleming, 2001). Distin-
guishing between the search depth and the search
scope is also important for hybrid problem-solving,
since scholars have suggested that, given its superior
information-processing capacity, AI has a greater
search scope (Von Krogh, 2018), while humans, who
have richer expertise, have a greater search depth
(Brynjolfsson & McAfee, 2014: 202). While the search
depth and scope vary during the search process, we
assess these dimensions in terms of the solution that
organizations select for implementation.6

Types of Hybrid Problem-Solving

Hybrid problem-solving requires at least two
agents—one human and one artificial—to address a
problem. While prior search studies have generally
focused on an individual agent’s problem-solving,
some scholars have recognized that complex pro-
blems create information-processing demands that
often exceed any individual agent’s cognitive capac-
ity (e.g., Baumann, 2015; Levinthal & Posen, 2007).
In such situations, two or more agents should
address the problem collectively.

A key collective problem-solving challenge is that
organizational tasks are usually not perfectly decom-
posable, which creates interdependencies between
agents (Heath & Staudenmayer, 2000; Simon, 1962).
Prior work has described three types of search task
division and their respective coordination mecha-
nisms (Billinger, Benincasa, Baumann, Kretschmer,
& Schumacher, 2023; Cyert &March, 1963: 200). The
first type requires agents to conduct the entire search
task separately (integrated search), while a higher-
level agent with contextual understanding selects
from their solutions (hierarchical coordination)
(Knudsen & Levinthal, 2007; Rivkin & Siggelkow,
2003). The second type makes agents conduct differ-
ent search subtasks sequentially (sequential search),
thereby allowing one-sided learning when agents
integrate the previous agents’ insights (temporary
coordination) (Baumann, 2015). In the third type,
agents work jointly on the entire search task (parallel
search), engaging in mutual learning (continuous
coordination) (Knudsen & Srikanth, 2014; Puranam
& Swamy, 2016).

Following extant work (e.g., Billinger et al., 2023),
we focus on a simple dyad of agents, in our case one
human and one artificial, to develop a typology of
hybrid problem-solving.7 Autonomous search is the
first hybrid problem-solving type, which requires an
AI agent to conduct the entire search task (i.e., prob-
lem definition and solution search) by using predic-
tive and generative AI in a closed loop (integrated
search). Generative AI creates new solutions that are
added to the input data, allowing predictive AI
to update the problem definition, which, in turn,

5 While we consider iterations between the two search
stages, we assume linear progression in the rest of the
process.

6 We focus on the solution that organizations select for
implementation due to its impact on more distant out-
comes, such as the solution’s performance. We do not
assess the solution’s performance, since factors outside our
theory-building efforts’ scope, such as the organizational
implementation and the market conditions, also impact it.

7 Our propositions could be extended to systems
with more than two agents. For example, in practice,
there are some AI applications that involve many humans
(i.e., artificial swarm intelligence; see Metcalf et al.,
2019) or AI agents (i.e., distributed AI; see Bond & Gasser,
2014).
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enables the next round of solution search.8 A human
with contextual understanding finally selects from
the AI-generated solutions (hierarchical coordina-
tion), although this person has little insight into AI’s
underlying black-boxmodels (Linardatos, Papastefa-
nopoulos, & Kotsiantis, 2020). Autonomous search
is used to ensure that humans, and their biases, do
not affect the search process. For example, Insilico
Medicine used autonomous search to discover a
drug for pulmonary fibrosis (Hale, 2021a), NASA to
lighten its next-generation space suits (Oberhaus,
2020), and L’Or�eal to create new social media con-
tent that doubled its returns (Prosser, 2021).

A sequential search uses predictive AI for the
problem definition, but a human subsequently con-
ducts a solution search without the use of generative
AI (sequential search).9 Coordination at handover
allows the human to learn from the AI agent’s prob-
lem definition (temporary coordination). Such learn-
ing is possible because sequential search uses
“explainable AI” (Senoner, Netland, & Feuerriegel,
2022), which pertains to the supplementary applica-
tion of interpretabilitymethods to enhance the trans-
parency of AI models. Sequential search is used to
benefit from AI’s superior prediction (Agrawal et al.,
2018: 110) before introducing unique human capa-
bilities, such as their creativity and contextual
understanding (Brynjolfsson & McAfee, 2014: 92), to
overcome AI’s limitations. For example, Benevo-
lentAI used sequential search to discover a Covid-19
drug (Metz, 2020), Tommy Hilfiger to create new
fashion designs (Arthur, 2018), andUtah’s ski resorts

to generate social media content that increased their
customers’ engagement (Cortex, 2022).

The final hybrid problem-solving type is interac-
tive search. The human and theAI agentwork jointly
on the problem definition and the solution search
(parallel search). Coordination throughout the
search process enables the human and the AI agent’s
mutual learning (continuous coordination). While
the inclusion of explainable AI methods enables this
learning, the use of generative AI always limits the
resulting models’ transparency (Linardatos et al.,
2020).10 Interactive approaches are used to combine
the human and the AI agent’s complementary learn-
ing skills (Puranam, 2021). Interactive search
allowed BenevolentAI to discover the first cure for
a rare childhood brain cancer (Gregory, 2021),
Philippe Starck to design a mass-market chair using
a minimal amount of material (Schwab, 2019), and
the electro-pop band Yacht to compose its first
Grammy-nominated album (Chow, 2020).

In the following sections, we argue that, despite
their basic similarities, there are two important dif-
ferences between these hybrid types and collective
problem-solving. First, collective problem-solving
divides the search task between human agents with
relatively homogenous cognitive abilities (Billinger
et al., 2023). Consequently, prior collective problem-
solving studies have not explored “agents with
asymmetric abilities” (Knudsen & Srikanth, 2014:
433). However, human and AI agents have funda-
mentally different cognitive capabilities (Amabile,
2020; Von Krogh, 2018). Hybrid problem-solving
processes and outcomes are therefore likely to vary
depending on how the search task is divided between
the human and theAI agent.

Second, collective problem-solving relies on coor-
dination between humans whose similar cognitive
abilities and shared understanding lead to “joint
myopia” (Knudsen & Srikanth, 2014: 409). Human–
AI coordination differs, because the human and the
AI agent’s asymmetric skills could enable comple-
mentarities, which foster learning (Choudhury et al.,
2020; Puranam, 2021). However, AI opacity could
constrain such learning, or even prevent it entirely
(Lebovitz et al., 2022). Hybrid problem-solving pro-
cesses and outcomes are therefore likely to vary with

8 Autonomous search generally uses an AI architec-
ture called generative adversarial networks (GANs)
(Goodfellow et al., 2014). In GANs, two artificial neural
networks—one for prediction and the other for generation—
work together in a closed loop by means of reinforcement
learning, thereby enabling continuous improvement. The
generator creates possible solutions with each iteration and
the predictor assesses their value against the target function.
In practice, there are usually hundreds of iterations, which
lead to increasingly better-performing solutions.

9 Sequential search relies on a single artificial neural
network for prediction. The type of artificial neural net-
work used depends on the input data: If the data being
processed have multiple dimensions (e.g., images), convo-
lutional neural networks (CNNs) are an often-used type of
artificial neural network, whereas recurrent neural net-
works are often the first choice for the sequential recogni-
tion of inputs (e.g., music); however, there are also
combinations, such as 3D-CNNs, that extract both spatial
and temporal features (e.g., video) (see Deng et al., 2022).

10 While interactive search generally uses explainable
GANs (Linardatos et al., 2020), which combine predictive
and generative artificial neural networks, as well as sup-
plementary interpretability methods to explain their
results, generative AI models are never perfectly transpar-
ent, which limits humans’ understanding of AI outputs.
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different types of human–AI coordination, as well as
the extent and nature of the learning they afford.

We next discuss the differences between autono-
mous, sequential, and interactive search. To make
these types comparable, we hold the pre-search stage
constant: The three hybrid types are assumed to
address the same type of problem, with similar
objectives and input data. For example, pharmaceu-
tical companies recently used all three hybrid types
to discover new drugs.11 We discuss the differences
between each hybrid type and a comparable collec-
tive human search for the problem-solving process

(i.e., the problem definition, solution search, and
selection) and outcome (i.e., the search scope and
depth). Figure 2 shows our propositions, and Table 1
provides an overview of the different problem-
solving types’ processes and outcomes.

AUTONOMOUS SEARCH

Autonomous Search Process

Problem definition. In collective human search,
which serves as our baseline, a human uses existing
solution knowledge to form mental representations
(Posen et al., 2018). Given this agent’s cognitive lim-
itations, the resulting mental representations are
partial and path-dependent (Knudsen & Levinthal,
2007). In contrast, autonomous search relies on
predictive AI to form latent representations

FIGURE 2
Hybrid Problem-Solving: Processes, Moderators, and Outcomes

Autonomous Search

Latent representations

Latent space exploration

Anticipatory quantification

(Propositions 1a, 1b)

Sequential Search

Interactive Search

Outcomes

Search scope 

Search depth

Moderators

Time scarcity as reinforcement
(Propositions 4a, 4b) (+)

Time scarcity as a constraint
(Proposition 4c) (–)

Lacking expertise as reinforcement
(Proposition 5a) (+)

Lacking expertise as a constraint
(Propositions 5b, 5c) (–) 

Refined representations

Privileged solution search

(Propositions 2a, 2b)

Shifting representations

Interactive experimentation

Interactive selection

(Propositions 3a, 3b)

Processes

11 While we hold the pre-search phase constant in our
theory-building efforts, we use real-life examples that inev-
itably exhibit some degree of variation. These examples
are meant to illustrate, rather than replace, our theory.
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(Goodfellow et al., 2016: 528), which are less partial
and path-dependent. They are less partial because
the AI agent processes extensive data to progres-
sively move from simple to highly complex repre-
sentations (LeCun et al., 2015), which enable a
more accurate prediction of the latent space (Bengio,
Courville, & Vincent, 2013). The representations are
less path-dependent because the AI agent learns
them directly from the input data without first
receiving human training (Bengio et al., 2013) and
regardless of the organization’s prior sensemaking
(Von Krogh, 2018). Furthermore, the additional use
of generative AI creates new synthetic data by sam-
pling from the latent space (Goodfellow et al., 2014).
Constantly adding these synthetic but plausible data
samples makes the latent representations progres-
sively more complete (Tanaka & Aranha, 2019) and
less path-dependent (Shorten & Khoshgoftaar, 2019).
Insilico Medicine’s AI agent, for example, processed
millions of documents to form latent representations
of pulmonary fibrosis, a lifelong lung disease with
limited treatment options. The resulting latent repre-
sentation uncovered 20 previously unknown path-
ways that a new drug could target (Hale, 2021a).

Solution search. In collective human search,men-
tal representations lead the human to conduct a local
search, which ceases once a satisficing solution has
been found (Cyert &March, 1963). In contrast, the AI
agent conducts latent space exploration (Fernandes
et al., 2019), which allows a wider and more exhaus-
tive search. This search is wider because generative
AI searches for new solutions across the entire latent
space. Generative AI creates random solutions,
while predictive AI provides feedback on how well
these solutions match the latent representations
(Goodfellow et al., 2014).12 In an iterative process,
the AI generator uses the AI predictor’s feedback to
create increasingly better-performing solutions. This
search is more exhaustive, because the AI agent has
quasi-unlimited information-processing capacity,
allowing it to explore a greater variety of solutions
from the latent space at low cost and time require-
ments (Raisch & Krakowski, 2021). This is possible
due to the AI agent doing an “offline search” (Gavetti
& Levinthal, 2000: 114) by predicting newly gener-
ated solutions’ performance against the target func-
tion without actually implementing them. Insilico
Medicine’s AI agent, for example, generated 80

previously unexplored molecules and predicted
their effectiveness in targeting the most promising
drug pathway it had identified in the latent represen-
tations (Hale, 2021b).

Selection. In collective human search, selection is
biased, since the human evaluator systematically
chooses local solutions over more distant ones
(Knudsen & Levinthal, 2007). This selection bias is
likely to be less pronounced in autonomous search,
because the AI agent provides the human with a
complex quantitative evaluation of the generated
solutions’ fit acrossmultiple objectives. Prior studies
have found that such an anticipatory quantification
reduces human discretion (Faraj, Pachidi, & Sayegh,
2018). While humans sometimes ignore AI recom-
mendations due to algorithm aversion (Dietvorst,
Simmons, &Massey, 2015), they tend to follow them
closely when complex outputs create cognitive over-
load (Allen & Choudhury, 2022). Accordingly,
Rivkin and Siggelkow (2003: 308) showed that
human evaluators simply “rubberstamp” proposed
solutions if the searchers have high search skills and
provide the evaluators with little information. This
is true of autonomous search, because the AI agent
has high search skills (Von Krogh, 2018) and the
evaluator finds the reasoning behind the black-box
AI models’ solutions opaque (Linardatos et al.,
2020). Insilico Medicine’s chief scientist, for exam-
ple, readily nominated the best-performingmolecule
that the AI agent had generated as the clinical trial
candidate (Hale, 2021a).

Autonomous Search Outcome

Search scope.Whereas organizations using collec-
tive human search prioritize local search (Knudsen &
Srikanth, 2014), autonomous search enables them to
form less path-dependent latent representations
and to explore the latent space more widely. Such a
comprehensive search of the search space results in
solutions that are, on average,more distant from those
explored previously (Fleming, 2001; Schilling &
Green, 2011). Moreover, Gavetti and Levinthal (2000)
suggested that an offline search’s lower cost and time
requirements reduce the experimenting risk, which
promotes more distant search. Finally, AI’s anticipa-
tory quantification (Faraj et al., 2018), and the evalua-
tor’s limited insight into AI’s integrated search
process (Linardatos et al., 2020), should reduce the
human tendency to systematically select local solu-
tions rather than distant ones. We therefore suggest
that autonomous search leads to outcomes that, on
average, includemore new knowledge than those that

12 Some applications use genetic algorithms (Goldberg,
1989), which work with metaheuristics inspired by the evo-
lutionary process of natural selection (with crossover and
mutation as genetic operators), instead of randomization.
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collective human search produces. Consistent with
this reasoning, Insilico Medicine’s fibrosis drug is
based on “a novel molecule” affecting “a biological
target (… ) that has never been tried before”
(Hale, 2021b).

Proposition 1a. Autonomous search increases the
search outcomes’ average scope compared to that of
collective human search.

Search depth. AI forms latent representations that
divert from organizations’ mental representations,
which means that they negate prior sensemaking ex
ante (Csaszar & Levinthal, 2016). Consequently, the
new knowledge that AI generates is, on average,
more distant from the existing solution knowledge
than when humans search. This distance makes it
difficult for humans to subsequently use their men-
tal representations (Schilling & Green, 2011) to
assess the AI’s solutions. Burrell (2016: 10) con-
cluded that “when a computer learns and subse-
quently builds its own representation (… ) it does so
without regard for human comprehension.” Conse-
quently, humans have few opportunities to apply
existing solution knowledge ex post. We therefore
expect that, on average, the final solutions derived
from an autonomous search rely less on existing
solution knowledge than those that collective
human search identifies. Accordingly, Insilico Med-
icine’s scientists did not use their expertise to
develop the de novo drug for pulmonary fibrosis,
which targets the disease on the basis of a previously
unknown pathway (Hale, 2021a).

Proposition 1b. Autonomous search decreases the
search outcomes’ average depth compared to that of
collective human search.

SEQUENTIAL SEARCH

Sequential Search Process

Problem definition. Like autonomous search,
sequential search starts with predictive AI forming
latent representations. However, temporary coordi-
nation allows the human to learn from the AI agent’s
problemdefinition. This learning is possible because
sequential search includes explainable AI methods
(Linardatos et al., 2020), which grant insight into the
latent representations. Consulting these white-box
models allows humans to explore more predictors
and higher-order patterns than would have been
possible without AI’s use (Faraj et al., 2018). This
learning leads to refined representations, which are

more complete than humans’ traditional mental
representations, therefore allowing for a more accu-
rate latent space prediction (Csaszar & Levinthal,
2016). While refined representations are more com-
plete, they are nevertheless path-dependent for the
following reasons: First, unlike autonomous search,
sequential search is limited to predictive AI, which
means that no newly generated data are added to the
input data. Second, humans learn by selectively inte-
grating new knowledge from the AI agent’s latent
representations into the existing solution knowl-
edge, which refines their mental representations in a
path-dependent process (Posen & Levinthal, 2012)
rather than changing them entirely (Tripsas &
Gavetti, 2000). At BenevolentAI, for example, the AI
agent visualized extensive information from the sci-
entific literature in a knowledge graph showing the
pathways that the Covid-19 virus uses to infect
humans. While the knowledge graph contained
thousands of relationships, the scientist analyzing it
used his expertise to quickly zero in on two familiar
pathways that “leapt out at him” (Metz, 2020).

Solution search. Refined representations enable a
human to conduct a privileged solution search. Com-
pared to humans’ traditional solution search, privi-
leged solution search is more likely to be local,
because refined representations provide more local
starting points for the search. Given humans’ prefer-
ence for local search (Cyert & March, 1963), local
starting points’ greater availability increases the
odds that a human will start the solution search in
the proximity of existing knowledge. Furthermore,
this initial local search is more likely to be success-
ful, because refined representations are more com-
plete, meaning that they allow more accurate
prediction (Gary &Wood, 2011), which increases the
chances of finding a satisficing solution through
local search (Gavetti & Levinthal, 2000). Accord-
ingly, Csaszar and Levinthal (2016: 2042) argued
that “a local search has more opportunities to get
stuck in the nooks and crannies of a more elaborate
representation.” BenevolentAI’s scientist initially
searched for known drugs that could inhibit the two
familiar pathways he had identified on the basis of
the knowledge graph. Since this local search yielded
47 known drugs with both inhibiting effects, he
stopped searching further (Metz, 2020).

Selection. As in collective human search, a
human selects from the final solutions. Humans
tend to systematically select local solutions rather
thanmore distant ones (Knudsen & Levinthal, 2007).
At BenevolentAI, for example, the scientist focused
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exclusively on drugs that were already approved for
medical use, and finally selected a well-known mol-
ecule (Kuchler, 2022).

Sequential Search Outcome

Search scope. Refined representations offer more
local starting points for humans’ solution search.
Furthermore, they enable better prediction, which
increases the likelihood that humans’ initial local
search will be successful. Humans interpret such
positive feedback on their initial experimentation as
a sign of the current search region’s munificence,
which limits their further search to the vicinity of
their initial search (Billinger, Srikanth, Stieglitz, &
Schumacher, 2021). Sequential search should there-
fore help organizations identify local solutions in a
greater share of their search initiatives, including
some where humans would traditionally have been
unable to identify a solution through a local search.
In these initiatives, it is no longer necessary to search
more widely (Posen & Martignoni, 2018), which
should decrease the average search scope across
the initiatives. Since the search remains local more
often, and is terminated more rapidly, less new
knowledge will be generated. In the Covid-19 drug
example, BenevolentAI’s scientist did not explore
any new molecules, since his refined representation
allowed him to rapidly and successfully identify a
known molecule that inhibits the two targeted path-
ways (Metz, 2020).

Proposition 2a. Sequential search decreases the search
outcomes’ average scope compared to that of collec-
tive human search.

Search depth. Refined representations increase
the chances of a human starting the solution search
at familiar points and subsequently continuing this
search in the existing solution knowledge’s vicinity.
Such a local search provides rich opportunities for
reusing existing knowledge when developing solu-
tions (Ott, Eisenhardt, & Bingham, 2017). We there-
fore expect that, on average, sequential search leads
to outcomes that integrate more existing solution
knowledge than collective human search does. This
is because human search is more prone to failure, and
therefore more often triggers distant search, leading
to outcomes that build less on existing knowledge
(Gavetti et al., 2012). Consistent with our argumenta-
tion, the Covid-19 drug that BenevolentAI identified
through its sequential search is a repurposed rheuma-
toid arthritis drug. Scientists had “spent years exploring
its effect on other viruses,” which provided extensive

prior solution knowledge that was leveraged for the
Covid-19 drug (Metz, 2020).

Proposition 2b. Sequential search increases the search
outcomes’ average depth compared to that of collec-
tive human search.

INTERACTIVE SEARCH

Interactive Search Process

Problem definition. Like sequential search, inter-
active search allows a human to initially learn from
predictive AI’s problem definition. However, unlike
in sequential search, this person provides theAI agent
with feedback, which triggers cycles of mutual learn-
ing (Holzinger, 2016). Each interaction cycle leads
to small changes in the representations (Csaszar &
Levinthal, 2016). Over time, these shifting representa-
tions evolve to become progressively more complete
and less path-dependent than traditional mental
representations. This is due to mutual learning often
being cut short when humans interact, because their
similar cognitive capabilities and rich communica-
tion promote shared knowledge and understanding,
which rapidly limit variance (Knudsen & Srikanth,
2014). Such early convergence is less likely when a
human and an AI agent interact, because their asym-
metric cognitive capabilities promote greater variance
(Von Krogh, 2018) and AI’s remaining opacity limits
these agents’ communication to a greater extent
than the rich communication between humans does
(Murray et al., 2021). Such limited observability and
communication act as partial isolation mechanisms
that prevent the two searchers from converging
quickly (Baumann, Schmidt, & Stieglitz, 2019; Fang,
Lee, & Schilling, 2010). Consequently, each interac-
tion cycle enables new variance and learning, which
are an “important form of adaptation” (Gavetti &
Levinthal, 2000: 127). BenevolentAI’s scientist, for
example, interacted with an AI agent to develop
representations of a childhood brain cancer that was
lacking treatment. The mutual learning allowed the
scientist to eventually realize that, to be effective, a
possible cure would have to target multiple pathways
simultaneously (Gregory, 2021).

Solution search. The human and the AI agent also
engage in interactive experimentation, which differs
from traditional solution search in two ways: First,
the use of generative AI to create new solutions
pushes the human beyond their local search in each
interaction cycle. While humans prefer more local
solutions (Cyert & March, 1963), the AI agent also
generates more distant ones from the latent space.
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Since theAI agent ranks the solutions in terms of their
performance against the target function, it is difficult
for the human to disregard superior, but more distant,
solutions completely (Von Krogh, 2018). Second,
human feedback introduces new variance in each
cycle, thereby enabling further AI generation in the
next cycle. Such interactive experimentation has the
potential to broaden a search sequentially, leading to
more distant solutions over time (Baumann et al.,
2019). The human and the AI agent’s asymmetric
cognitive capabilities promote this generative effect
by introducing new variance in each cycle, which
should increase the potential for more distant search
(Posen & Martignoni, 2018). At BenevolentAI, for
example, interactive experimentation allowed for
exploring entirely new treatment combinations
between molecules that “would not have been obvi-
ous to people” (Gregory, 2021).

Selection. As in autonomous search, the AI agent
provides a quantitative evaluation of the generated
solutions. The difference is that the human and the
AI agent engage in interactive selection, which com-
bines the AI agent’s anticipatory quantification with
the human’s heuristic selection. We surmise that the
AI assessment counterbalances a human’s selection
bias (Faraj et al., 2018). Given a human’s involve-
ment in the entire search process, this person is
likely to form independent opinions of and pre-
ferences for jointly developed solutions, but is
unlikely to disregardAI’s anticipatory quantification
completely (Von Krogh, 2018). BenevolentAI’s sci-
entist, for example, selected a highly ranked novel
drug combination for clinical trials (Gregory, 2021).

Interactive Search Outcome

Search scope. Shifting representations and inter-
active experimentation broaden a search sequen-
tially, despite each interaction only making limited
changes (Baumann et al., 2019). Since human–AI
communication is more limited than the rich com-
munication between humans (Murray et al., 2021),
there is less risk of early convergence (Knudsen &
Srikanth, 2014). Furthermore, these agents’ asym-
metric cognitive capabilities are more likely to intro-
duce variance in each cycle, which allows further
experimentation (Kaplan, 2011). Interactive experi-
mentation between the human and the AI agent
should therefore better maintain variation over time,
which leads to solutions that, on average, incorpo-
rate more new knowledge generated during the
problem-solving process than those that collective
human search produces. At BenevolentAI, for

example, the interactive search incorporated previ-
ously unknown and jointly derived insights into “a
new drug regime,” resulting in a “new treatment
combination” (Gregory, 2021).

Proposition 3a. Interactive search increases the
search outcomes’ average scope compared to that of
collective human search.

Search depth. While interactive search generates
more new knowledge, the human’s strong involve-
ment throughout the entire problem-solving process
ensures that this new knowledge is integrated with
existing knowledge. In each interaction cycle, the
human relies on existing solution knowledge to
absorb new knowledge (Gavetti & Levinthal, 2000).
Shifting representations require the human to fre-
quently revisit existing solution knowledge (Posen &
Martignoni, 2018) and interactive experimentation’s
gradual learning process compels this person to inte-
grate new and existing knowledge (Holzinger, 2016).
However, the human’s cognitive limitations constrain
the degree to which this knowledge is integrated into
solutions (Cyert & March, 1963). Similarly, research
on AI in management has shown that an increasing
information (Luo, Qin, Fang, & Qu, 2021) and cogni-
tive (You, Yang, & Li, 2022) load hampers human–AI
collaboration. We therefore expect that interactive
search, similar to collective human search, leads to
solutions that, on average, integrate moderate levels
of existing knowledge. For example, the novel cancer
drug combination resulting from BenevolentAI’s
interactive search integrates two known molecules
that were “already approved to treat other types of
cancer” (Gregory, 2021).

Proposition 3b. Interactive search and collective human
search are related to similar levels of search depth.

TIME AND EXPERTISE AS
CONTINGENCY FACTORS

The Moderating Role of Time

Prior research has suggested that time imposes
search constraints (Baumann et al., 2019; Greve,
2003). AI agents substituting humans in the search
process could help organizations overcome some of
these constraints, since their superior information-
processing capacity allows them to complete tasks
more rapidly (Gregory, Henfridsson, Kaganer, &
Kyriakou, 2021). However, hybrid problem-solving
keeps humans in the process, which means that
further exploration is needed to assess how time
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scarcity moderates hybrid problem-solving types’
outcomes.

Time scarcity as reinforcement. Time scarcity is
likely to have little adverse effect on autonomous
search, because, contrary to human search, the AI
agent’s information processing requires little time
(Gregory et al., 2021). Insilico Medicine, for exam-
ple, produced a novel pulmonary fibrosis medicine
in 18 months, compared to the three to six years that
the traditional process requires (Hale, 2021a). How-
ever, time constraints complicate humans’ search
(Greve, 2003), which should decrease the human’s
ability to challenge and revise the technology’s
outputs further (Orlikowski & Scott, 2014). Time
scarcity therefore reduces human selection’s con-
straining effect on the search scope and limits the
human’s ability to apply existing solution knowl-
edge ex post, which decreases the search depth fur-
ther. On this basis, we propose:

Proposition 4a. Time scarcity reinforces an autono-
mous search’s positive effect on the search scope
(Proposition 1a) and its negative effect on the search
depth (Proposition 1b).

In sequential search, the human invests more time
in refining representations, which, ceteris paribus,
reduces the time available for a solution search
(Csaszar & Levinthal, 2016). Such time constraints
reduce the solution search’s scope, particularly when
the representationsaremorecomplex (Baumannet al.,
2019). Under conditions of time scarcity, the human
is therefore likely to shorten their solution search
(Uotila, Keil, & Maula, 2017), which increases the
probability of the resulting solutions being in the
vicinity of the existing solution knowledge. The pres-
sure that BenevolentAI experienced to rapidly find
a cure for Covid-19 was one reason for limiting the
solution search to existing drugs (Metz, 2020). We
therefore propose:

Proposition 4b. Time scarcity reinforces a sequential
search’s negative effect on the search scope (Proposi-
tion 2a) and its positive effect on the search depth
(Proposition 2b).

Time scarcity as a constraint. Contrary to autono-
mous and sequential searches, whose outcomes are
reinforced, time scarcity constrains interactive search.
Since time scarcity imposes constraints on the num-
ber of sequential trials in the search process (Uotila
et al., 2017), the interactive experimentation is
reduced and, therefore, is less likely to lead to more a
distant search over time (Holzinger, 2016). Investing
more time in the problem definition leaves less time

for a solution search, which increases the risk of
becoming snagged during a local search (Csaszar &
Levinthal, 2016). Alternatively, reducing the time spent
on a problem definition increases the risk of human’s
representations being too distant from those of the
AI agent, which could lead to “mutual confusion”
(Knudsen & Srikanth, 2014: 409). Whatever the case,
time scarcity constrains interactive search’s effects by
decreasing its search scope. Formally,wepropose:13

Proposition 4c. Time scarcity constrains an interac-
tive search’s positive effect on the search scope (Prop-
osition 3a).

The Moderating Role of Expertise

Prior research has also highlighted that expertise—
the skills and knowledge accumulated in a domain
through prior learning (Choudhury et al., 2020)—is
an enabler and constrainer in the search process
(Cyert & March, 1963; Puranam et al., 2015). Predic-
tive AI could be a substitute for humans’ expertise
(Agrawal et al., 2018), possibly reducing a lack of
expertise’s constraining effects. However, human
expertise could also complement AI (Choudhury
et al., 2020).

A lack of expertise as reinforcement. In autono-
mous search, a lack of expertise is unlikely to affect
the search process negatively because the AI agent
acts as a substitute of the human. TheAI agent learns
directly from the data without requiring access to
human expertise (Russell & Norvig, 2020: 651). How-
ever, prior theory has suggested that inexperienced
humans suffer even more from their limited under-
standing of AI outputs (Kellogg, Valentine, &
Christin, 2020). Accordingly, Anthony (2021) found
that inexperienced humans generally accept AI out-
puts without questioning them. A lack of expertise
could therefore reduce human selection’s constrain-
ing effect on the search scope even further. Conse-
quently, we propose:

Proposition 5a. A lack of expertise reinforces an
autonomous search’s positive effect on the search
scope (Proposition 1a) and its negative effect on the
search depth (Proposition 1b).

A lack of expertise as a constraint. Conversely, a
lack of expertise is likely to constrain sequential
search, because the more complex representations

13 We do not convey moderating propositions for inter-
active search’s relationship with search depth, since the
main relationship (Proposition 3b) predicts no difference
compared to a collective human search.
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that it informs swiftly overwhelm humans with little
expertise (Csaszar & Ostler, 2020). Further, an inex-
perienced human has a lower absorptive capacity
to grasp the complexities arising from AI-based
technologies’ use (Choudhury et al., 2020). Conse-
quently, this human’s learning from AI could be
more limited. We therefore expect a lack of expertise
to constrain sequential search by leading to less
refined representations, which provide fewer and less
accurate local starting destinations. This increases the
risk of humans’ initial local search being unsuccess-
ful, which could broaden their search gradually
(Gavetti et al., 2012). Furthermore, a lack of expertise
constrains the human’s ability to leverage prior solu-
tion knowledge fully, which could in turn reduce the
search depth. Formally, we propose:

Proposition 5b. A lack of expertise constrains a
sequential search’s negative effect on the search
scope (Proposition 2a) and its positive effect on the
search depth (Proposition 2b).

There are similar constraints in interactive search
when an inexperienced human’s limited ability to
absorb and use theAI agent’s outputs, and to provide
meaningful feedback, undermine the human and
the AI agent’s capacity to learn from one another,
which could lead to “mutual confusion” (Knudsen &
Srikanth, 2014: 409). A lack of expertise constrains
interactive search by undermining the joint repre-
sentation learning and interactive experimentation,
which enable a gradual increase in the search scope.
These arguments lead to our final proposition:

Proposition 5c. A lack of expertise constrains an
interactive search’s positive effect on the search scope
(Proposition 3a).

DISCUSSION

In the behavioral tradition, prior research advanced
a human-centric perspective of organizational search
(March & Simon, 1958; Puranam et al., 2015). We
complement this work with a technology-conscious
perspective explaining how organizations’ increasing
use of AI-enabled search for problem-solving changes
the search processes and outcomes.

Theoretical Implications

Our work’s first contribution is the conceptualiza-
tion of eight new AI-enabled search mechanisms
(see Table 1, numbered from 1 to 8) with theoretical
implications that cannot be derived from the current
behavioral search models with a human-centric
perspective:

First, predictive AI allows organizations to form
more complex representations than the simplistic
ones that the human-centric perspective describes
(Barr, Stimpert, & Huff, 1992; Csaszar & Levinthal,
2016). Three new problem definition mechanisms
make this possible: Predictive AI forms highly com-
plex and opaque latent representations (1), while
combining human and AI agents’ predictions creates
refined (2) or shifting (3) representations that are
moremoderately complex, but are explainable. These
AI-enabled representations can allow for a better
prediction of the latent space than prior accounts
of human-derived representations assumed possible
(Gavetti & Levinthal, 2000). Furthermore, better
prediction enables a privileged solution search (5),
which is a new human solution search mechanism
that benefits fromAI’s superior problemdefinition.

Second, generative AI allows organizations to
conduct a broader solution search than has been
described in prior research (Cyert & March, 1963;
Posen et al., 2018). Latent space exploration (4) is the
first solution search mechanism that is independent
of human search, and therefore less affected by
humans’ search limitations than prior technological
tools intended to broaden solution search (Afuah &
Tucci, 2012; Piezunka & Dahlander, 2015). This new
AI-based search mechanism reduces organizations’
data-availability limitations (Simon, 1957) by gener-
ating new data, their data-processing limitations
(Cyert & March, 1963) by using machines’ extensive
capacity, and their path dependencies (Gavetti &
Levinthal, 2000) by learning directly from the data.
The other mechanism, interactive experimentation
(6), shares a common groundwith research describing
how interactions between humans could broaden a
search (Baumann et al., 2019), but also differs from
this prior solution:While interactions between similar
agents (i.e., humans) primarily increase organizations’
cognitive capacity (Posen et al., 2018), interactions
between different (i.e., human and AI) agents also
enable the combination of complementary capabili-
ties. These complementarities could make human–AI
interaction less prone to joint myopia, which usually
limits human interaction’s ability to broaden a search
(Knudsen& Srikanth, 2014).

Third, combinations of predictive and generative
AI enable two mechanisms that allow organizations
to reduce their selection bias (Knudsen & Levinthal,
2007). The first mechanism is AI agents’ anticipatory
quantification (7), which is largely a substitute for
humans’ heuristic selection, thereby reducing bias
toward local solutions. The second mechanism,
interactive selection (8), complements humans’
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heuristic selection with AI’s anticipatory quantifica-
tion, which counterbalances humans’ natural ten-
dencies when selecting.

Our work’s second contribution is a descriptive
and explanatory model of hybrid problem-solving
(see Figure 2). This model predicts that organiza-
tions’ use of AI-enabled search does not necessarily
result in more distant outcomes, but widens the
range of outcomes compared to those that current
behavioral search models’ human-centric perspec-
tive predicts (Cyert & March, 1963; Katila & Ahuja,
2002). As shown in Figure 3, a collective human
search is most likely to result in local search out-
comes (Knudsen & Srikanth, 2014). Conversely, an
autonomous search relies on latent representations,
latent space exploration, and anticipatory quantifi-
cation to generate, on average, more distant search
outcomes (Figure 3, upper-left quadrant), while a
sequential search uses refined representations and a
privileged solution search, leading tomore local out-
comes (lower-right quadrant). Interactive search’s
shifting representations, interactive experimenta-
tion, and interactive selection result in outcomes
that, on average, integrate more new knowledgewith

existing solution knowledge (upper-right quadrant).
Organizations could occasionally generate search
outcomes corresponding to those predicted for the
three hybrid types on the basis of collective human
search, such as distant solutions that emerge from
humans’ creative genius (Kneeland, Schilling, &
Aharonson, 2020). In the digital age, however, they
could generate these outcomes more systematically
by deploying hybrid problem-solving.

Our model also suggests that these distinct search
outcomes emerge from different combinations of
human and AI agents’ capabilities in the problem-
solving process. Behavioral search theory has gener-
ally focused on how humans’ specific cognitive
capabilities explain search outcomes (March &
Simon, 1958; Posen et al., 2018). Our hybrid problem-
solving model shifts the focus from humans’ cogni-
tive capabilities to the search process, which prior
research often treated as a “black box” by linking
humans’ search capabilities directly to the search out-
comes (Posen et al., 2018: 217). Our hybrid problem-
solving model is a first step toward exploring specific
search processes and their underlying mechanisms
that explain the outcomes.

FIGURE 3
Collective Human Search versus Hybrid Problem-Solving: Outcomes

Interactive
search

Sequential
search

Autonomous
search

Collective
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search

High
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scope
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Note: Figure 3 provides an illustrative representation of different problem-solving types’ outcomes. Collective human search, which serves as
our baseline, leads mostly to local outcomes (low scope or moderate depth) and some more distant ones when the initial local search fails (illus-
trated by the spike). In respect of the hybrid problem-solving types, the darker areas indicate wheremost of the final solutions are expected.
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Finally, we contribute to the literature on AI
in management (Agrawal et al., 2018; Raisch &
Krakowski, 2021) by expanding its scope from the
use of predictive AI for routine tasks to generative AI
applications for solving novel problems. Generative
AI has gained broader attention recently, following
the introduction of large language models (LLMs)
like ChatGPT (Hao, 2023), even though organiza-
tions have been employing other forms of generative
AI for several years.14 Despite these developments,
research inmanagement has thus far focused on pre-
dictive AI applications in decision-making (Shrestha
et al., 2019) and control (M€ohlmann, Zalmanson,
Henfridsson, & Gregory, 2021). We extend this work
by distinguishing between predictive and generative
AI, exploring the interrelations between these AI
types, and conceptualizing the associated search
mechanisms and processes. This extension partially
changes prior studies’ assumptions. For instance,
generating new data has the potential to reduce
input data biases, thereby improving prediction.
Furthermore, while previous studies on applying
AI to routine tasks emphasized accuracy and reli-
ability (Shrestha et al., 2019), nonroutine tasks, such
problem-solving, place greater emphasis on novelty
and variability (Winter, 2003). As a result, our work
lays the foundations for expanding current research
on exploitative AI use within an organization’s rou-
tines (Murray et al., 2021) to more exploratory appli-
cations beyond these routines.

Limitations and Future Research

We set boundaries to limit our propositions and
provide the theoretical development focus and
depth. Reconsidering these boundaries is beyond
our study’s scope, but could inform future research.
One such boundary refers to our assumptions about
sufficient data availability and searching a given
space. In practice, organizations may sometimes
attempt to use AI in situations where the available
data are insufficient—for example, in existing
domains where the data are severely biased, or in

new domains where there are few prior solution
examples. In these situations, humans could, on the
basis of their intuition and contextual understand-
ing, play an important role when auditing AI’s
inputs, processing, and outputs (Anthony, 2021), or
when generating solutions by using abstractions and
analogies despite having only limited data (Mitchell,
2019). They could also enable search beyond the cur-
rent search space by using their creativity to identify
new search spaces. For example, humans could
combine two databases from distinct fields to create
a new search space with more distant solutions (e.g.,
artists use such “pre-curation” to generate novel
AI artworks; see Elgammal, 2019). Future research
should therefore explore the role of humans in pre-
paring and enabling the use of AI in situationswhere
the initial data are scarce or biased, or creativity is
needed to explore beyond the current search space.

Another boundary is our model’s assumption that
the different problem-solving types address the same
problem.While this is realistic andmakes these types
comparable, organizations could also select strategi-
cally from them. As organizations increase their
understanding of the hybrid types’ outcomes, they
could select those types that are most likely to deliver
the desired results for a given problem. However, fur-
ther research is needed to ascertain this supposition.

A third boundary is the focus on specific problem-
solving initiatives. While solving specific problems
occurs outside operational routines (Winter, 2003),
organizations develop search routines that shape
their general approaches to solving problems
(Nelson & Winter, 1982: 133; Nigam, Huising, &
Golden, 2016). If an organization, for example,
develops routines that prioritize an autonomous
search, its overall outcomes could exhibit greater
novelty than those that organizations primarily
using sequential searches produce. Alternatively,
organizations could strategically balance their use of
different problem-solving types across initiatives.
For example, they could balance the use of autono-
mous search, which is conducive to more distant
outcomes, with that of sequential search, which
enables more local ones. This strategic use could
provide organizations with a newmechanism to bal-
ance the dual exploration and exploitation require-
ments (March, 1991; O’Reilly & Tushman, 2008).

A fourth boundary is our narrow focus on problem-
solving. While problem-solving and decision-making
are distinct processes (March & Simon, 1958: 160),
they could be related. For example, Raisch and
Krakowski (2021) suggested that organizations
could initially use AI to explore novel problems,

14 In this paper we have focused on GANs, the most
common form of generative AI in practical applications. In
contrast to GANs, LLMs do not incorporate a predictor but
rely on a pretrained model of language understanding,
often referred to as the foundation model. The absence of a
built-in predictor renders LLMs less accurate in their pre-
dictions. Experts anticipate that combining LLMswith pre-
dictors will be necessary to ensure their accuracy and
robustness for high-stakes problem-solving contexts, such
as drug discovery (Hansen, 2023; Savage, 2023).
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but subsequently routinize their decision-making in
similar situations once these problems are well-
understood and their solutions are known. Future
research could investigate how AI applications
to solve problems and make decisions affect one
another.

A fifth boundary is that we did not explore the
consequences beyond the search outcomes. The use
of AI-based search alters the work of managers,
scientists, and engineers in organizations. Scholars
could explore how this affects their job profiles and
skill requirements (Krakowski et al., 2023), as well
as their work relationships (Kellogg et al., 2020).
They could also study the societal implications of
AI-based search’s use, which has the potential to
solve grand challenges, such as finding drugs for
neglected diseases, reducing waste and carbon
emissions, and designing sustainable products, but
could also have negative externalities. For example,
a pharmaceutical company’s data scientists recently
repurposed their employer’s drug discovery system.
By simply inverting the AI models’ parameters—to
search for chemical compounds with a high
toxicity—they identified 40,000 new potential
chemical weapons within six hours, including some
predicted to be more toxic than any known nerve
agent (Urbina, Lentzos, Invernizzi, & Ekins, 2022).
This example highlights the need to prevent themis-
use of AI-enabled search.

A sixth boundary is that we concentrated on AI
technologies currently in use. AI technologies are in
a state of constant evolution, and new technologies
inevitably emerge. Specifically, it would be intrigu-
ing for future research to delve into the emerging uti-
lization of LLMs, such as ChatGPT, in the context of
search and problem-solving. Such research could
entail comparing and contrasting the application
processes and outcomes of these models with those
we have described.

Finally, our theoretical ideas need to be empiri-
cally explored. Future research could use qualitative
methods, such as case studies and ethnographies,
which allow for rich insights into longitudinal pro-
cesses and the organizational contexts in which they
occur (Langley, 1999). While these methods are ade-
quate for describing hybrid problem-solving pro-
cesses in greater depth, field experiments could
provide quantitative evidence of their outcomes.
Field experiments allow for manipulating the use of
different AI implementations in real-life contexts,
thereby offering causal insights into outcomes’
underlying drivers (Krakowski et al., 2023). For
example, a company’s marketing teams could use

different hybrid problem-solving types to develop
social media content, which allows the comparison
of outcomes against those of a control group using
collective human search. Alternatively, researchers
could rely on archival data on companies’ search
portfolios, such as the knowledge repositories of
pharmaceutical companies’ drug discovery activities.

CONCLUSION

Csaszar and Steinberger (2021) have reminded
management scholars that some of their key concepts,
like representations and search, originate from foun-
dational AI research. Management scholars, however,
have applied these concepts to describe human
behavior, largely ignoring their technology heritage.
Our study returns to the origins, particularly Simon’s
(1965) vision of AI inmanagement. Simon completed
his pioneering work at a time when the use of AI to
solve problems was merely a vision. Today, we build
theory from a different vantage point by observing
AI-enabled search in organizations. In managerial
practice, AI agents are not as almighty as they were in
Simon’s (1965) vision, since humans and AI agents
work jointly on solving problems. These hybrid pro-
cesses enable rich combinations of human intelli-
gence and AI, which could increase the variety of
search outcomes compared to those that emerged in
the past. Promising applications suggest that these
developments enable organizations to solve problems
more effectively, but also generate challenges requir-
ing furthermanagement research attention.
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